
Prcceedings of IEEE Asia Pacific Conference on Circuits and Systems ’96
November 18-21, 1996, Seoul, Korea

Design Verification of Complex Microprocessors

Joonseo Yim, Changjae Park, Wooseung Yang, Hunseung Oh. Hoon Choi,
Seungjong Lee. Nara Won, In-Cheol Park and Chong-Min Kyung

Department of Electrical Engineering
KAIST,

373-1 Kusong-Dong, Yusong-Gu, Taejon. 305-701, Korea
Tel: 82-42-866-0700
Fax: 82-42-866-0702

e-mail: kyung@dalnara.kaist.ac.kr

Abstract- As t h e complexity of micropro-
cessor increases, functional verification becomes
more difficult and emerges as t h e bottleneck of
t he design cycle. In this paper, we suggest
a functional verification methodology, especially
for t he compatible microprocessor design. To
guarantee t h e perfect compatibility with previ-
ous microprocessors, we developed these C mod-
els in different representation levels, a.e., Polaris,
MCV(Mzcro-Code Verqfier) and StreC. An instruction
behavioral level C model(Polarzs) is verified us-
ing the slowed-down PC. In t h e implementation
of micro-architecture, a micro-operational level
model(MCV) and RTL model(StreC), both writ-
ten in C, are co-simulated with consistency check-
ing(1PC) between these two models. The simula-
t ion speed of C models makes i t possible to test
t h e “real-world” application programs on the C
model with a software board model(VPC). To in-
crease t h e confidence level of verifications, Pro-
filer reports the verification coverage of t he test
program, which is fed vack t o t h e automatic test
prograin generator(Pandora). Restartabzlity feature
also helps significantly reduce the total simulation
time. Using t h e proposed verification methodol-
ogy, we designed and verified the K486, an Intel
486-compatible microprocessor successfully.

I . INTRODUCTION

The advancement of semiconductor technology has
made it feasible to integrate more than ten million
transistors on a single chip and to operate at the
clock speed of several hundred MHz. This astound-
ing chip complexity has resulted in difficulties in the
verification[l, 2 , 3, 4, 5 , 6, 71. Moreover, recent mi-
croprocessors tend to maintain the instruction-level
compatibility with the previous ones which saves
huge efforts for application software development [2] .
Though compat.ibility can be best guaranteed by

an exhaustive simulation with real application pro-
grams, the simulation time increases drastically as
the design complexity increases and has been a bot,-
tleneck in a complex microprocessor design.

Therefore, it is crucial to verify the functionality
of design and eliminate errors at an early stage of
the design. Eradicating the functional bugs which
are alive until the final gate level simulation requires
excessively large amount of comput,ing time and de-
bugging efforts. Efficient verification methodologies
become vital to the success of microprocessor design
and their significance will continue to increase as we
move into more complex designs.

Recently, the verification crisis of microprocessor
design leads to hot research issues both in academia
and industry. The hardware emulationr2], formal
verification[l] and cycle-based simulation[8] have be-
come the state-of-the-art verification methodologies.
The cost of emulation hardware is very high and re-
quires that the gate level design be already finished.
Therefore, it requires large turnaround penalty to
fix gate-level bugs. The hardware description lan-
guage(HDL) such as VHDL and Verilog is a conve-
nient method to describe a hardware, and a cycle-
based simulation shows a clear simulation perfor-
mance advantage over an event-driven simulator[9].
On the other hand, the general purpose Verilog
simulator is much slower than the custom-tailored
simulation using C language. Although hardware
accelerators[lO] yield significant speed-up for the
gate-level design, they do not provide fundamental
solution for the RTL or even for the behavior level de-
sign. In this paper we suggest a low-cost simulation
method based on three RTL C models, z.e., behav-
ioral level, micro-operational level and RTL, and also
the overall verification methodology using slowed-
down PC, software system modeling, and IPC(Inter
Process Communication).

The proposed verification methodology is applied
to the K486, which is Intel 80486 compatible micro-

0-7803-3702-6/96/$5.00@1996 IEEE PL4.1 441

processor This paper is organized as follows A
proposed functional verification methodology is de-
scribed in section 2 Section 3 deals with the pro-
ductivity issue such as test program generation, test
coverage analysis and restartability feature
section 4 shows some verificati Its

11. FUNCTIONAL VERIFICATION

A. Design Flow

A traditional top-down design flow for micropro-
cessors is presented in Fig l (a) . From the design
specification, design is gradually refined and moved
down to the physical implementation level An im-
portant problem in the top-down design flow is how
to maintaiii the consistency between the consecu-
tive design levels As shown in Fig l (b) , we divide
the description level in more detail such as C1, C:!
and Cs, which represent the model of microprocessor
written in C for behavioral, micro-operational and
RTL respectively

level 1 model 1 level of description I language
C , 1 Polaiis 1 Instruction behavior I C
C:2 MCV Micro-operation
C3 StreC RTL
V I V4 1 RTL

Specification Specification

f

(4

onal tis. (b) proposed des
microprocessors

In our simulation-based approaches for micropro-
cessor design, RTL design usiiig
simulated with a reference model,
level inodel or micro-operation 1
Consistency is confirmed by interprocess communi-
cations(1PC) in UNIX[11]. Through the whole de-
sigil procedure of K486 microprocessor, we have used
clean-room and top-down appro e design
and verification as shown in Fig

tioii set is specified, the instruction set simulator,
called Polarzs is built As Table I shows, Polarzs

Physical Functional
implementation verification

Fig. 2 K486 Design flow

the behavior of X86 instruction
describe the detailed architecture

~ superscalar instructioii pairing, parallP1
functional units, cache and buffering Represent,ing
a higher abstraction level allows us to produce a ref-
erence model that contains very few bugs and runs
at over 100 times the speed of Verilog RTL model
This execution speed of Polaris makes
run the “real-world” programs consist
billion instructions on software model
possible with commercial cycle-based
gate-level HDL simulation even with hardware ac-
celer at ion.

To verify the instruction level compatibility of
Polaris, the slowed-down PC without CPU called
CMV(C Model Verafier) is used as shown in
Fig 3 The host computer emulates the instructions
through Polaris and the slowed-down PC is used as
P C mother board and peripherals The slowed-down
PC and host computer are connected through the in-
terface board which contains several FPGA chips to
emulate the bus interface unit of the microproces-
sor with the buffer circuit which receives and sends
messages from and to the host computer.

The message contains information on the bus cy-
cle which should be performed in microprocessor
through input/output pads There is a minimuin
clock frequency, f m z n , below which the stable oper-

ed-down P C is not possible If fm tn

is less than the frequency of the Polaris, t,hen the in-
terface circuit can be very simple, otherwise a com-
plex circuit is required in order to provide a buffer-
ing and synchronization mechanism between slowed-
down PC and host computer

442 PL4.2

m SlowdownedPC 1 7

description features code lines Once the instruction behavior of Polaris is verified

But for

using CMV, the Polaris becomes a golden-reference Polaris Macro instruction behavior register 9,675
MCV Micro-operation behavior register 18,534

internal bus model for further detailed design stages.
the micro-architecture level or RTL, the simulation StreC clock-level RTL Flip-flop,latch 55,415
speed degradation is inevitable. Then the slowed- Phi 1 edge, Phi 1 level internal bus
down PC can no longer be used for slow simula-

model of PC environment is needed for the micro-
architecture level and RTL simulation.

Phi 2 edge, Phi 2 level combinational
pipeline

internal bus
combinational

pipeline
timing

model less than loo KHz’ Therefore a ‘Oftware Verilog Clock and event-based RTL Flip-flop,lat& 35,223 ~

HDL

To verify all the cases which can occur in real sys-

PC Monitor Nwy

tem, such as hardware interrupts, multiple memory

I I I
HMI SMI

.

Fig. 3. H/W and S/W co-simulation environment called
CMV for the verification of C model

C. Reference Model

Co-simulation Environment

I I I I

Fig. 4. CO-simulation environment for different design
models(i.e., Polaris, MCV, StreC and Verilog) with
VPC(Virtual PC). IPC dynamically checks the consistency
between models during the simulation

TABLE I
DESCRIPTION O F CPU MODELS IN VARIOUS LEVELS

and 1 / 0 cycles, it is necessary to simulate through
real-world programs rather than by znstructzons. To
run the real-world programs, such as MS-DOS, Win-
dow 3.1, Linux, Window95, and application pro-
grams in design model, a software model of system
board called VPC(Vzrfua1 PC) is developed. The PC
environment was modeled in UNIX workstation us-
ing X window system and consists of memory system,
hard/floppy disk, interrupt controller, video display,
timer and so on as shown in Fig. 4.

For the CISC microprocessors and FPU, one
macro instruction consumes multiple cycles, there-
fore one macro instruction is subdivided into a num-
ber of micro-operations which is executed in one
clock cycle. Micro-operations are closely related
to the datapath hardware or exception handling
scheme. MCV(Mzcro Code Verzfier) is a C model
describing the micro-operation level behavior. Nei-
ther Polaris nor MCV exactly matches the timing
details as obtained via RTL model. However, the
speed advantage of Polaris and MCV makes them to
be used as “golden” reference model of RTL micro-
architecture design.

D. StreC : RTL C Model

Traditionally, RTL description is based on HDL
such as Verilog. To achieve high simulation speed,
we described RTL operation in C language. This

model called StreCaccurately describes the cycle-by-
cycle synchronous logic behavior as shown in Fig. 5.
All the registers, combinational signals and clocks
are declared as global variables. All the signals are
categorized into three types : flip-flop, latch and
combinational signal. All the flip-flops are updated
simultaneously at the edge of clocks, P1E or P2E.
The combinational logics are evaluated at the mid-
dle point of clock phase P1L and P2L, while the latch
is evaluated only one of transparent period, P1L or
P2L. Top module calls all the subroutines for each
block in succession at the two clock edges and two
clock levels.

As StreC is not event-driven, special care should
be taken to allow signals to flow correctly between
modules. Signal Flow Graph(SFG), which represents
the precedence relations and temporal relations, is
very useful for correcting many tricky timing prob-
lems which, although unveiled during the C-level
simulation, can later be detected as hardware bugs.

To describe the synchronous circuit operation in C
is not a simple job, it requires cautious efforts such
as static signal ordering and asynchronous loop re-
moval. But most of the design time is consumed by
simulation rather than the description of design it-
self.

The speed advantage of C over general-purpose
HDL is liken to the assembly programming over

PL4.3 443

F C‘onsistencj. (‘heck PiE PiL P2E P2L

phllL= In traditional approaches [4, 51 ~ simulation traces
of both a reference model and RTL model are phi2 7 l * L

Coinhl = IIIFFI)
Comh? = tZ(FFI FFZ) dumped. After finishing the long sim

L o w CI~ster plh_edge() post-analysis tool compares two trace fil
tencies were detected, design er

For a long simulation, the t r a
eiiormously larger than several

hi2_lrvel(]

Comh? = fl(FF4)

Comb5 = F5IComb3)
Comh4 = t4(FF2 FF3.Comb3) Moreover, dumping of trace file slow~-do.lvns tlie siin-

P2E PIE j Lotchl =comh4 ulation speed by 5 or 6 tinies As an alternat,ive,
we use a dynamic consistency check inechanisin us-
ing IPC(Interprocess Communications) in 11 NIS[1 t]
during the co-simulation It neither requires extra
trace files nor degrades the simulation speed

StreC and MCV(or MCV and Polaris) rim in par-
allel When StreC completes one instructio
tion, StreC sends its results to MCV, wlii
waiting for the results of StreC
ceived results with its own resu
StreC whether the results are coiisi

tops when the differences
nt has shown that IPC yi

Pi E

IB (a1 IC1

Fig 5 (a)Signal Flow Graph showing the clock timing of
flip-flops(FF’s) a i d latches, (b) symbols for SFG and (c) the
corresponding RTL C description, 2-phase clocking scheme
was assumed (In cycle-based simulation. phi1 is simply
assumed to be the complement of ph

compiler-assisted high level I
Even though the hadware de
ficult than the well-formalize
many aspect,s, its simulation speed can be very fast
than tlie general-purpose commercial simulation en-

nly used to desigii and debug
of IC486 The RTL model runs

ing.

dation of 10 - 20 5%. depending 011 circuit size
In MCV. all micro-operations are executed

single cycle. However. in StreC the micro-operat
can be delayed by inore than one cycle due to the
pipeline stmall and tlie external interrupt handling de-
lay. Because of many advanced impleineiitatioii fea-
tures, such as pipeline, cache, delayed haiidliiig and
buffer, two models may not be identical. For exain-
ple, the instruction counter, specific regist,er values
and memory map may be shifted bY
this does not meal1 errors in reality.
is needed for the simulation engineer
the real bug from artifacts.

ndow-based micro-architecture probing tool
displays information such as register values, inicro-
codes and memory content on the screen as shown
in Fig. 7. The designers eradicate tlie hardware bugs
using both the micro-architecture tool and waveforin
displayer of RTL trace.

program a t 1400 cycle/sec as shown in Table I1

E Gate-Level Verilog Stmidation with hardware ac-
celerator.

A hardware simulation accelerator suc Zycad’s
le for the vali- Paradigm XP series[lO]

datioii of the gate-level
~ test programs and

000 a~celerat~or
tor though VXI

were
ula-

system configuration is shown in Fig
able to boot MS-DOS in less than 48 h
tion usiiig the accelerator for the case
Intel 80386 compatible microprocessor

111 PRODUCTIVITY
Verilog XL Programming
Simulator 4. Debugging Cost

During the system-level simulation, many bugs are
detected at an early phase as
small percentage z.e., 15 % of
end of the design process occupies most of simulation
time(50% of total debugging time) When the test,
programs are applied to the fully integrated system-
level design, the amount of simulation time soars
nificaiitly degrading the design turnaround There-

design complexity of coiiiplex microprocessor
necessary to apply the “divide-ancl-conquer”

y-j:r:t
Paradigm =----El

Fig 6 Gate-level Verilog simulation with Zycad acceleiation

444 PL4.4

Fig. 7. Micro-architecture probing tool : Debugging
information such as instruction count, register value,
memory map, op-code, micro-code are shown with
forwardjbackward trace capability.

method, 2. e., “module-by-module’’ test should pre-
cede the “post-integration” debugging. It is very
important that basic block tests are enhanced in the
earlier design phase to shorten the total verification
time.

Sometimes a ‘careless’ design modification may
lead to malfunction of another block shown as a
deep canyon at 17 million instructions as shown in
Fig 8. Regression tests should run in company with
the frontier RTL simulations in order to guarantee
that proposed bug correction did not corrupt other
behaviors.

+ B Y 0 Oecurrad
Number of insfr~CtiOn
executed IYmt Mtlllon)

2 0

- . - A

< 1 . .
, a - _ -.-l.

i

. , 1 h . 3
. ’ - - L +

1

are three kinds of test suites. The first one is hand-
crafted test vector, the second one is very long se-
quence of instructions generated in a biased random
fashion. The final one is real-world application pro-
grams including operating systems.

The first hand-crafted codes are the by-product
of X-86 instruction behavior discovery program that
scrutinizes the real, virtual and prot,ected model be-
havior of X-86 microprocessors. They are computer-
generated vectors with a hand-coded template by
architecture design team and t,est team for several
years. The total number of hand-crafted test vector
amounts to 500. The
terleaving of existing

happens in real ap
to the limit .

action of these instructions will exhaustively cover
all the test cases and produce conditions that, rarely
happens. Now, we plan to develop more iiit,elligent
ATPG which generates the high quality test vector
which guarantee the 100% pat,h coverage and 100%
arc coverage. Given a directed graph of the FSM’s
or micro-code, it should generate the test programs
that cause the simulation to exercise every arc in the
graph with minimal redundancy.

, Fig. 9. ATPG(Automatic Test Program Generator) called Time (days)

Real mode Test Protected mode Test APP,iCallonOlW,ndoW3 ,,
Pandora generates more than 300 test programs with the
biasing information of instruction and operand type

Fig. 8. Bug eradication curve to boot Windows3.1 on StreC

C. Test Coverage and Profiler

This “debugging-and-resimulation” forms basi-
cally an endless loop in the microprocessor design.
The test coverage[4, 5 , 6, 71 probably is the single
most important measure of the verification quality.

B. Test Suites

Good test vectors help find design bugs quickly
during the simulation. We deliberately try to stress
the design models to their limit. In our case, there

PL4.5 445

Just randomly generated test vectors for the verifi-
cation of the behavior of op-code cannot guarantee
the coverage of all the block interface protocols and
complex state machine traversals State-of-the-art
microprocessors include complex hardware schemes
such as instruction pipelining, branch prediction, su-
perscalar multiple pipes, external bus buffering, mul-
tiprocessor cache, and maiiy exceptional cases. Enu-
merating all the test combinations of various situa-
tions, signal paths, and FSM transitions is impossi-
ble.

Discovery Progra

Biasing

1
PassiFail

Fig. 11. Test coverage metrics are fed back to the automatic
test program generator for more complete test.

Fig. 10 Number of OrcuIrences of each of 256 instructions in
running DOS applications. It is shown that some
instructions denoted bv a 'cross' were not invoked at all.
(after 2 million instructions)

In our simulation environment, Profiler gives test
coverage metiics such as inst,ruction coverage, micro-
operation mix, FSM transition coverage, pipeline

rences of each of 256 instructions aft8er the execution
of some "real-world'' program consistiiig of 2 million
iiistruct,ions I t is shown that a significant number
of instructions were never tested
op-codes or uncovered arcs in FSM might be respon-
sible for some vicious bugs which
at the final verificatioii phase or eve

The test coverage metrics are used
improve the quality of the test
the designers a feeling for tlie o
test vector set as shown in Fig
ingful test coverage metrics, all simulation time is
wasted by testing cases that are no
be tested, while some cases are nev

D. Rest art a bill t*y

Traditioiial simulation has an important weak
poiiit Designers usually do not dump the signal
trace in the first simulation because it is impossi-
ble to kiiow where the error should occurr before-
hand, and tlie signal trace overburdens the simula-
tion speed by 5-6 times Therefore, if an error is

ed, designers simulate once iiiore froin the first
ction to the bug poilit, to duinp the sigiial trace

withiii the sniall time interval as shown in Fig 12

After the debugging, designers modify t,he model and
re-simulate from the first, instruction. This has been
a tedious but unavoidable process in the traditional
simulator. In our experience. the siinulatioii time is
as much as 15 times that of the debugging itself in
a traditional simulator for the microprocessor level
debugging

Fig. 1 2 . Reduction of simulation time by the
save-and-restart feature of StreC

The key point i s to save this reduiidant simulation
time by providing restartability StreC saves inter-
nal states at the completion of every]E(instruction
periodically. This is different from the trace dump.
Only the internal states such as flip-flop signals are
saved a t a snapshot rather than long time trace for
all signals This makes it possible to restart simula-
tion from arbitrary point by loading the saved siiap-
shot. As most trivial bugs are detected aiid design
becomes stabilized, the ininor modifications of design
have little effects on the system state Restartabil-
ity plays a key role to find more bugs in a shorter
time by reducing the redundant siinulatioii Using
the restartability feature, the total simulation time
is miillmized to 30% of the traditional simulation ap-
proach without restartability

446 PL4.6

IV. RESULT

Model

We applied the proposed functional verification
methodology to the K486, which is an Intel i486TM-
compatible microprocessor developed at KAIST.
K486 microprocessor consists of 32-bit integer unit,
64-bit floating point unit and a 8 K-byte cache as
shown in Fig. 13.

Most of datapath and control logic blocks are built
from 0.8pm CMOS library, while area and time-
critical blocks, such as clock, cache, TLB, shifter and
adder are designed by full-custom layout. Total 1.25
million transistors are integrated in 1.6 x 1.6 cm2
area at 0.8pm DLM CMOS process. A target work-
ing frequency is 60 MHz.

execution I execution time
speed(CPS) I DOS I Windows3.1 Fig. 13. Floorplan of the K486 microprocessor

In our K486 project, there were limited number of
designers within the very limited schedule as shown
in Fig. 14. One designer wrote the instruction level

Fig. 15. Screen image showing the successful booting of
Windows 3.1 using StreC, which took 48 hours running
about 20 million instructions.

tor, the sequence of logic evaluation is determined
completely in the static fashion during the com-
pile time and the redundant signal transitions are
not evaluated in LCC(leve1ized compiled-code) sim-
ulator. This gives no expensive overhead of event
scheduling.

TABLE I1
COMPARISON OF SIMULATION SPEED OF EACH MODELS FOR

BOOTING DOS(460,OOO) AND ~ I N D O W S ~ . ~ (2 ~ , ~ ~ ~ , ~ ~ ~
INSTRUCTIONS) ON SPARC2O (CPS: CYCLES PER SECOND)

behavior model, one wrote the micro-operation level
model, one wrote the system board model, and only
four designers wrote the RTL C model. But using an
efficient verification methodology, total several bil-
lion cycles are simulated on the RTL C model un-
til the tape-out. We were able t o successfully boot
MS-DOS and Windows-3.1 on the StreC as shown in
Fig. 15.

-47 E-i-1 --,..I Im[--..-q -&*I- r-T - -c ~ ~~~ c-
p*** PDu¶ prrl p**.

M I I D * * O I ~ ~ m m " w u "-L11*-ml - y l o u l I I x ~

Fig. 14. K486 design milestone

Table I1 shows simulation time needed to boot var-
ious operating systems and compares the simulation
speed between C and Verilog description of K486.
Enormous speed advantage of StreC and SpeedSim
over event-driven simulator comes from the cycle-
based logic evaluation. In the cycle-based simula-

V. CONCLUSION

A functional verification methodology for complex
microprocessor was proposed in the paper. The ver-
ification is focused on fast simulation to remove log-
ical errors a t the early design stages. The hardware
description based on C language was suggested. This
methodology was proven to be efficient in terms of
simulation speed over existing HDL simulator for the
most microprocessor designs especially in CISC mi-
croprocessor such as K486. Most of the design errors
can be identified through the simulation based on C.
We were able to boot real-world operating systems
and many application programs on those C models.
The test coverage measure and restartability concept
were also instrumental in minimizing the verification
cost.

PL4.7 447

REFERE

UItraSPARC-I” ,in Proe. DAG, 1995,pp.7-12

[4] Anoosh Hosseini, et a1 , “Code Generation and Analy-
sis for the Functional Verification of Microprocessors” ,in
PTOC DAC, 1996, pp.305-310

[5] Michael Kantrow
What? Verification Coverage Analysis and Correct-
ness Checking of the DECchip 21164 Alpha micropro-
cessor”,in Proc. DAG, 1996, pp.325-330

[6] RichardA Lethin, et.al., “MDP Design Tools and Meth-
ods”, in Proc. ICCD, 1992, pp.424-435

[7] Walker Anderson, “Logical Verification of the NVAX
CPU Chip Design”, in Proe. ICCD, 1992, pp.306-309

[8] Douglas Day, “SpeedSim : The leader in Cycle-Based
Simulation”, 1996

[9] “Verilog-XL Reference Manual”, Cadence Design Sys-
tem Inc., version 1.6, 1991

[lo] “ZyCAD XPlus Logic Simulation”, Zycad Corporation
1994

R. Stevens, “Advanced Programming in the UNIX
vironment ,” Addison-Wesley Publishing Company,

1992.

PL4.8

